Biopiles – Overview

- Introduction
- Treatability Studies
- System Design & Construction
- System Operation & Maintenance
- Video
- Case Histories
- Questions & Answers

Biopiles – Introduction

A solid-phase, ex-situ process, using forced aeration to increase oxygen availability to accelerate contamination degradation

Biopiles – Introduction

- Indigenous microorganisms
- Contaminants reduced to CO₂ and H₂O
- Basic construction
 - Treatment pad
 - Aeration system
 - Irrigation/Nutrient system
 - ◆ Leachate collection system
- Remediation costs range from \$25 to \$70 per ton

Biopiles – Applicability

- Heavy-chain hydrocarbon (JP-5 and diesel)
- Contaminated soil sources:
 - ◆ UST removal
 - ◆ Spill sites
 - ◆ Pipeline leaks
- Treatment time typically 3 6 months

Purpose

- Determine if contamination can be degraded to acceptable cleanup levels by indigenous microorganisms
- Establish soil conditions in the soil environment that enhance the health of the fuel-degrading microorganisms

Information Desired

- Residual hydrocarbon contaminant concentrations/types
- Hydrocarbon-degrading microorganism population density
- Physical/chemical parameters: pH, nitrogen, phosphorus, moisture, salinity, particle size distribution
- ◆ Acceleration of biodegradation with the application of H₂O, nitrogen, phosphorous
- Biodegradation rate: 6-8-week soil column study

Standardized Laboratory Methods Used

- ◆ Bacteria counts
- Nutrient needs
- Hydrocarbon analysis
- Microbial respiration
- ◆ Others

Costs

- ◆ \$8,000 10,000 average
- Cost can range up to \$20,000 if different soil matrices are tested

Technology Transfer Documents

- ◆ Biopile Treatability Studies Technical Data Sheet TDS-2024-ENV March 96
- Biopile Design and Construction Manual -Technical Memorandum TM-2189-ENV June 96
- Biopile Operations and Maintenance Manual -Technical Memorandum TM2190-ENV June 96

Biopile Design and Construction Manual (TM-ENV-2189)

- Details selection procedures and design steps
- Uses a 500- to 750-yd³ design as an example case
- This manual contains:
 - Biopile decision tree
 - Technology overview
 - Permitting strategy
 - Predesign activities
 - Description of temporary and permanent biopile construction
 - ◆ 11 appendices listing reference information and sample calculations

Biopile Operations and Maintenance Manual (TM-2190-ENV)

- Companion document to the Biopile Design and Construction Manual
- Provides step-by-step operational guidance
- Main text includes:
 - Technology overview
 - Sampling and analysis
 - Regulatory issues
 - System operation
 - Health and safety
- Appendices contain:
 - 10 O&M checklists and data sheets
 - Sample calculations
 - Troubleshooting guide
 - General health and safety plan

Biopile Cost Estimator

- Software package written in MS Excel Visual Basic
- Provides initial biopile cost estimates
- User-friendly approach
- Produces on-screen and print copies of:
 - Installation cost sheet
 - ◆ O&M cost sheet
 - Summary cost sheet

Overall Objective

To provide optimal conditions

O2

H2O

Nutrients

PH

Microbial Population

Predesign Decision

Temporary	Permanent
Existing foundation	New foundation
Minimal support facilities	Upgraded support facilities
Facility life < 5 yrs	Facility life > 5 yrs
Low capital cost	High capital cost

Predesign: Site Selection

- Close-by utilities (electrical/water)
- ◆ Flat/solid ground (slight slope OK)
- ◆ Located outside 100 yr. flood plain
- Secured
- ◆ Outside of residential area
- Centralized site for soil handling
- Avoid off-base soil handling

Predesign: Site Size

- Quantity of contaminated soil
- Frequency of reception
- Retention time in the biopile
- Soil preparation
- Additional space required for system equipment pads, soil storage and handling
- System size examples:
 - → 500 yd³ biopile: 11,000 ft²
 - + 3,000 yd³ biopile: 40,000 ft²

Base Construction

- Soil or clay foundation/existing asphalt
- ◆ Impermeable liner (40-60-mil HDPE)
- ◆ Leachate collection berm
- ◆ Clean soil base

Aeration System

- Header pipe
- Valves at the manifold branch points
- Water knockout tank
- Cyclone separator
- Aeration pump
- Exhaust-gas treatment unit

Aeration System for a Temporary Biopile

Moisture & Nutrient System

- Initial moisture/nutrient addition during biopile formation
- Drip-line irrigation climate considerations
- ◆ Leachate collection system (optional)

Dripline

(b) Plan View

Supply Header

Water Source

Typical Dripline Irrigation System

Biopile Formation

- Soil preparation/processing:
 - Bucket loader
 - + Parallel bar screen
 - **→ Trommel Screen**
 - + Soil shredder
 - → Soil mixer

- Installing soil gas monitoring points
 - + O₂, CO₂, TPH
 - + Locations/depths
 - → Thermocouples temperature measurements

- ◆ Time-zero sampling
 - One soil sample per 50 yd³ to 100 yd³ (negotiable with regulatory agency)
 - → Analyze typically for:
 - Initial TPH
 - BTEX
 - Moisture content
 - pH
 - Microbial density

- Soil gas sampling
 - → Gas sample pulled from monitoring points
 - → Soil gas readings:
 - O₂
 - · CO₂
 - TPH
 - → Establish effectiveness
 - Establish microbial activity (respiration test)

- Cover installation
 - → HDPE (12-20-mil thickness)
 - → Black or other color (not clear)
 - **→** Snug-fitting
 - + Tied down

Biopiles – O & M

Operations Requirements

- Crew training & experience
- Operations management
- System startup & shakedown
- Routine Operations
- Off-gas treatment system operation

Biopiles – O & M

Maintenance Requirements

- Aeration manifold maintenance
- ◆ Biopile cover repair
- ◆ Blower maintenance
- ◆ Off-gas treatment system maintenance

Biopiles – O & M Monitoring – Sample Schedule

Sampling Event	Sample Interval
Soil sampling	Upon pile construction and then as dictated by respiration test and soil-gas sampling
Soil gas sampling	At startup, 1 week after startup, and then monthly
Respiration testing (in-situ & shutdown respiration tests)	24 to 48 hours after turning on the blower, 1 week after initial test, and then monthly
Blower exhaust-gas sampling	Weekly or as dictated by the site
Exhaust-gas sample collection for laboratory analysis	Monthly

Biopiles – Videos

Biopiles: A Long-Term Solution

MCAGCC Twenty Nine Palms

- Design parameters
 - → Size: 100 ft x 100 ft, 8 ft high
 - → Capacity: 2,400 tons/cycle
 - Design specifics:
 - 12 in. sand layer
 - 60-mil HDPE liner
 - 1 ft pea gravel
 - 16 slotted PVC pipes (4-in-dia.)
 - Without cover

MCAGCC Twenty Nine Palms

- Contamination levels/Regulatory requirements
 - → Typical start: 5,700 ppm TPH
 - → Cleanup target level: 1000 ppm TPH
 - → No air permit required
 - → Treated soil used as daily landfill cover
 - → JP-5 & some diesel

MCAGCC Twenty Nine Palms

- Special circumstances
 - ◆ 4 in. rain per year average no cover
 - → High winds
 - → Desert southwest climate
 - Developed rapport with regulatory boards
 - → Temporary converted to permanent

MCAS Yuma, AZ

- Design parameters
 - + Size: 100 ft x 100 ft, 4 ft high
 - → Capacity: 1,200 tons/cycle (4 cells, 300 tons/cell)
 - → Design specifics:
 - 10 in. concrete
 - 60-mil HDPE liner
 - 4-ft-high wall
 - Special cover

MCAS Yuma, AZ

- Contamination levels/Regulatory requirements
 - → Typical start: 30,000 50,000 ppm TPH
 - → Cleanup target level: 5000 ppm TPH
 - ◆ No air permit required
 - + JP-5

MCAS Yuma, AZ

- Special circumstances
 - Unique cover design
 - Water filtering
 - UV-resistant
 - ◆ Slotted lightweight flexible irrigation tubing, 4-in. dia. covered with nylon sleeves
 - Concrete poured over 2 in. slurry (unsaturated) placed over liner - concrete cracked, inadequate curing compound

National Test Site, Port Hueneme

- Design parameters
 - → Size: 52 ft x 52 ft, 8 ft high
 - → Capacity: 400 tons/cycle
 - Design specifics:
 - Existing asphalt base
 - 60-mil HDPE liner over felt pad covered by 8 to 12 in. soil to protect liner
 - 3- to 4-in. slotted PVC pipes covered by
 6 in. pea gravel

National Test Site, Port Hueneme

- Contamination levels/Regulatory requirements
 - **→** Typical start: 5,000 7,000 ppm TPH
 - → Cleanup target level:
 - Gas: 100 ppm
 - Diesel: 250 ppm
 - Heavy petroleum: 1,000 ppm

National Test Site, Port Hueneme

- Special circumstances
 - → Existing asphalt base
 - → High profile SERDP site
 - → Special monitoring
 - → Special construction